Критерий оценки письменной экзаменационной работы.

Каждый вопрос (№№ с 1 по 10) оценивается от 0 до 2 баллов. Каждая задача (№№ с 11 по13) оценивается от 0 до 3 баллов. Баллы суммируются. Максимальный балл -29. Зачетный балл -14. Интерпретация результатов в соответствии с БРС:

Баллы за ответ	Балльно-рейтинговая оценка
	за экзамен
14.	25.
15.	26.
16.	27.
17.	28.
18.	29.
19.	30.
20.	31.
21.	32.
22.	33.
23.	34.
24.	35.
25.	36.
26.	37.
27.	38.
28.	39.
29.	40.

ИТОГОВАЯ ОЦЕНКА (БРО за экзамен + баллы за семестр)

61 – 73 балла – удовлетворительно

74 – 84 балла – хорошо

85 - 100 баллов - отлично

Образец письменного экзаменационного задания

- 1. Напишите формулу для расчета осмотического давления раствора хлорида кальция. Определите изотонический коэффициент.
- 2. Напишите формулу для расчета рН ацетатного буфера. Напишите состав буферного раствора, укажите сопряженную кислоту и основание.
- 3. Известны значения стандартных электродных потенциалов:

$$E_{Fe^{+3}/Fe^{+2}} = 0.77B$$
 $E^{0/}o_{2/H_2O} = 0.82B$

Напишите уравнение окислительно-восстановительной реакции с участием этих веществ, рассчитайте ЭДС.

- 4. Напишите схему элемента, состоящего из водородного электрода в растворе соляной кислоты и хлорсеребряного электрода.
- 5. Напишите уравнения вторичной диссоциации соединения: $[Cu(NH_3)_4]Cl_2$. Напишите выражение константы нестойкости.
- 6. Изобразите наиболее устойчивую конформацию циклогексанола с предпочтительным расположением заместителя.
- 7. Сколько электронов делокализовано в сопряженной системе пропеналя? Укажите тип сопряжения.
- 8. Какой ион адсорбируется ионитом состава R-(COO^-) $_nNa^+{}_n$ из раствора $HgCl_2$. Напишите схему обмена ионами.
- 9. Напишите схему, отражающую равновесие в растворе серина при различных значениях pH.
- 10. Напишите таутомерные формы 2-оксобутановой кислоты.
- 11. Рассчитайте pH аммонийного буфера, полученного сливанием равных объемов 0,1 н раствора аммиака и 0,01н раствора хлорида аммония. pK аммиака=4,75.
- 12. Рассчитайте степень диссоциации кислоты, если потенциал водородного электрода в 0,2н растворе равен -0,18В.
- 13. Рассчитайте соотношение концентраций форм глицина в 0,01М растворе азотной кислоты. $pK_{-COOH}(\Gamma nu) = 2,35$; $pK_{\stackrel{+}{-NH_2}}(\Gamma nu) = 9,78$; pI (Гли) 6,1.