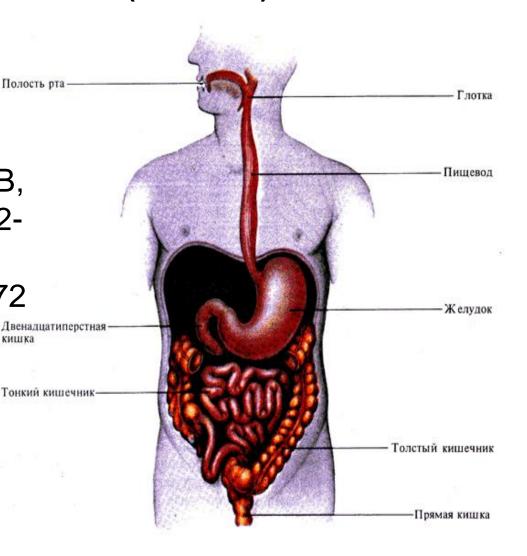
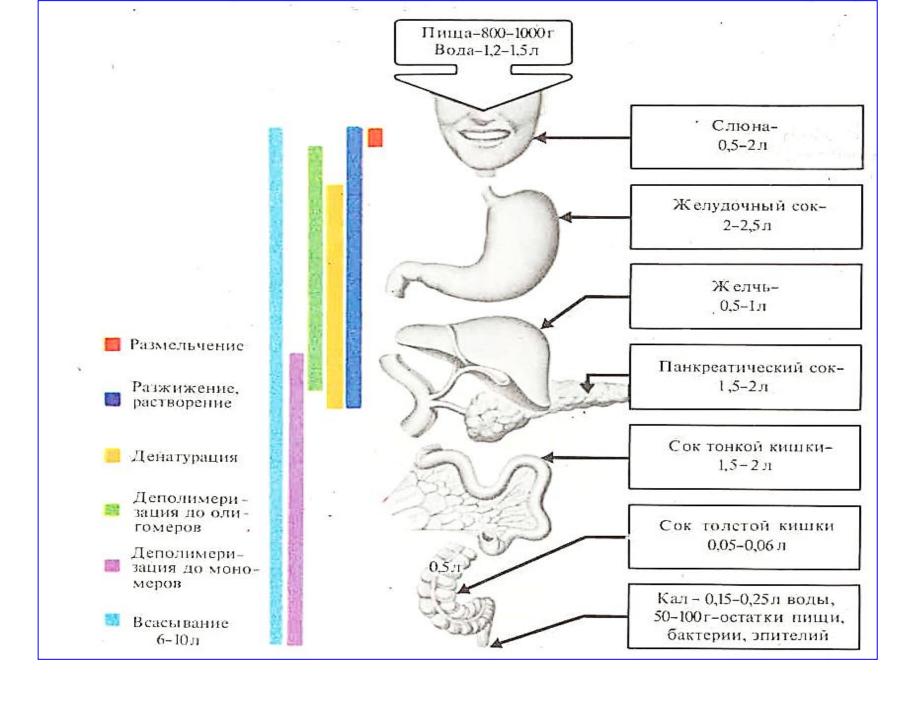
ФИЗИОЛОГИЯ ПИЩЕВАРЕНИЯ

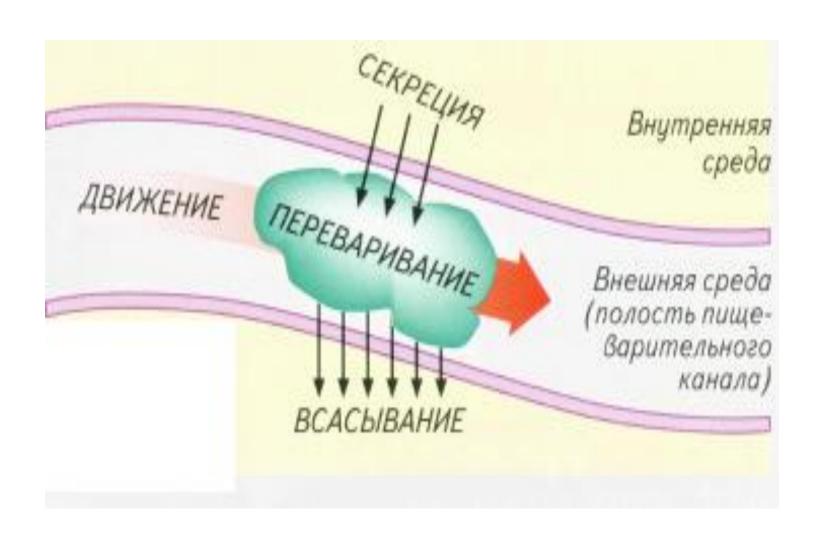
Лекция 1

«Точное знание судьбы пищи в организме должно составлять предмет идеальной физиологии будущего...»
И.П.Павлов, 1904 год

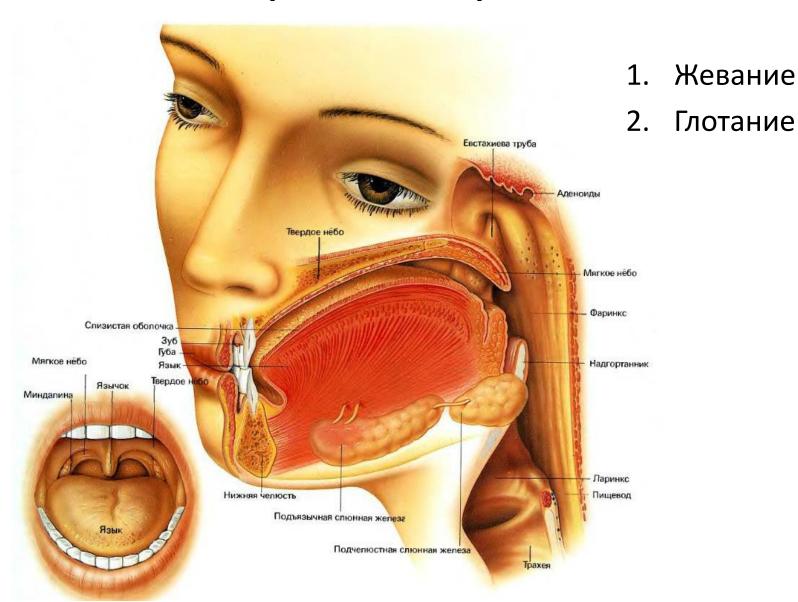

ПИЩА ПРОХОДИТ ВСЕ ОТДЕЛЫ ПИЩЕВРАТИЛЬНОГО ТРАКТА ЗА 48-72 ЧАСА (2-3 ДНЯ):


•РОТОВАЯ ПОЛОСТЬ — 15-20 СЕКУНД,

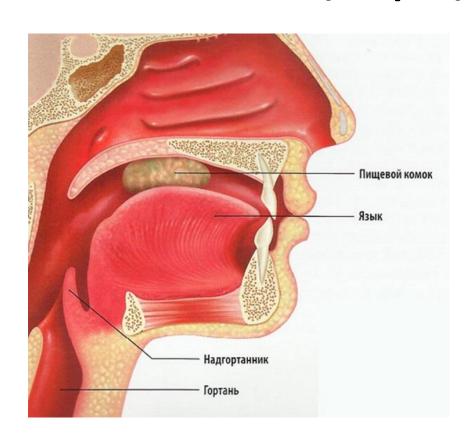
•ЖЕЛУДОК – 1-10 **ЧАСОВ**,


•ТОНКИЙ КИШЕЧНИК — 2-6 ЧАСОВ,

•ТОЛСТАЯ КИШКА — 24-72 ЧАСА.

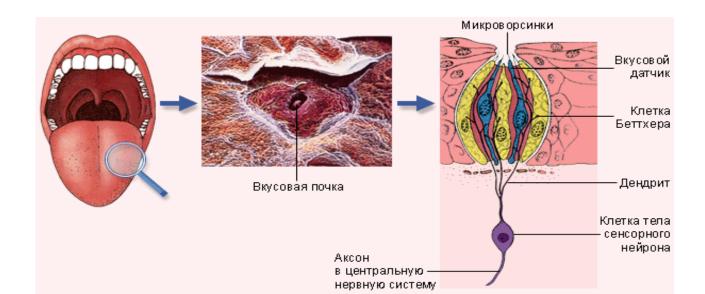

Основные пищеварительные процессы

Пять основных процессов пищеварения:


- Рецепторный (сенсорный)
 - Секреторный
 - Моторный
 - Всасывание
 - Экскреция (выведение)

Пищеварение в ротовой полости

Функции жевания.

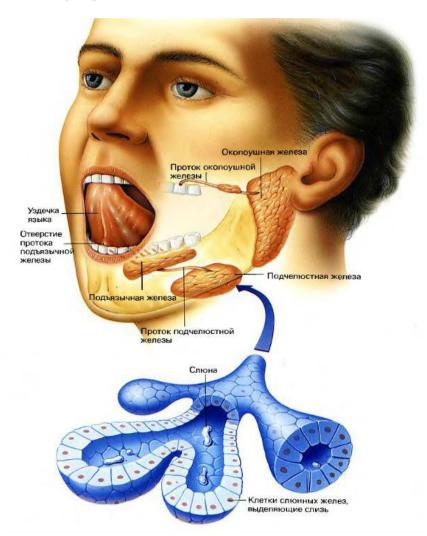

- Размельчение пищи.
- Смешивание с секретом слюнных желез.
- Контакт пищи с рецепторами.

Результат жевания пищевой комок, пригодный для проглатывания.

Рецепторы - чувствительные нервные окончания. Рецепторы ротовой полости:

- 1. Вкусовые
- 2. Тактильные
- 3. Проприорецепторы пародонта и жевательной мускулатуры
- 4. Температурные
- 5. Болевые

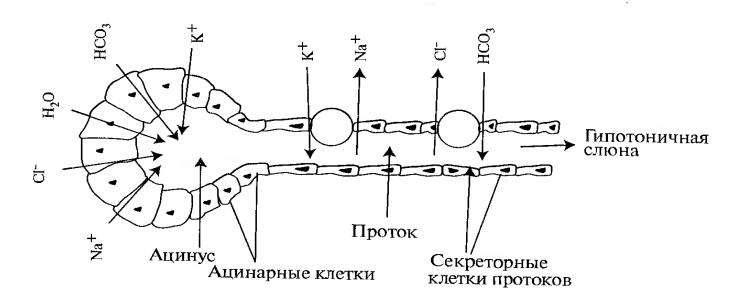
Роль рецепторов ротовой полости в регуляции пищеварения


- *Определение качества* пищи.
- Запуск и регуляция рефлексов слюноотделения, жевания, глотания.
- Стимуляция секреции желудочного и панкреатического соков, а также выделения желчи.
- Участие в формировании сенсорного насыщения.

Секреторная функция

Состав слюны:

- 1. Вода, электролиты
- 2. Муцин (слизь)
- 3. Ферменты: <u>амилаза,</u> небольшое количество протеаз, липаз.
- 4. БАВ: л<u>изоцим</u>, калликреин, паротин, факторы роста, иммуноглобулины


pH = 5,4-7,8

ФУНКЦИИ СЛЮНЫ


- ПИЩЕВАРИТЕЛЬНЫЕ
- 1. Смачивание облегчает жевание и глотание.
- 2. Растворение пищевых веществ, что необходимо для вкусовых ощущений.
- 3. Начальные этапы гидролиза углеводов.
- НЕПИЩЕВАРИТЕЛЬНЫЕ
- 1. Увлажнение слизистой ротовой полости, что необходимо для речевой функции.
- 2. Защитная и антибактериальная.
- 3. Регуляция регенерации слизистой.
- 4. Участие в терморегуляции (испарение).
- 5. Поддержание фосфорно-кальциевого обмена полости рта.

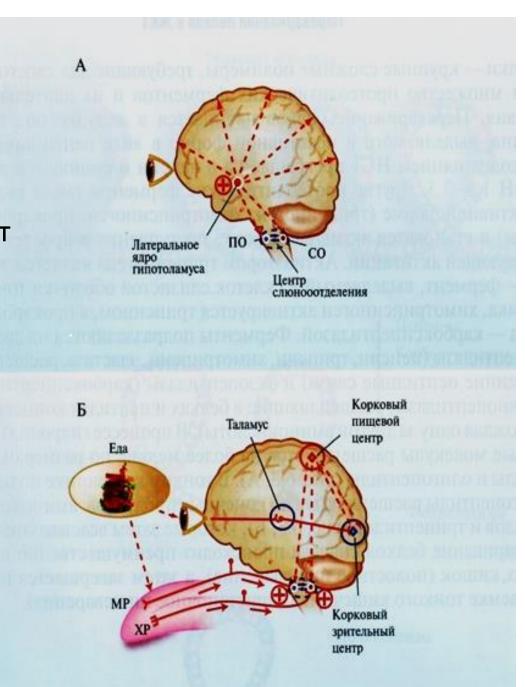
Образование слюны. Два этапа:

- **1. В ацинусах** происходит синтез белков, активный и пассивный транспорт веществ, образуется первичная слюна изотоничная плазме крови.
- **2. В протоках** реабсорбция натрия и хлора, секреция калия и бикарбонатов вторичная слюна гипотонична.

Регуляция секреции слюны

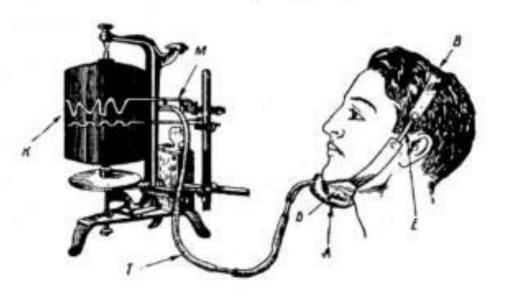
Эфферентная иннервация слюнных желез:

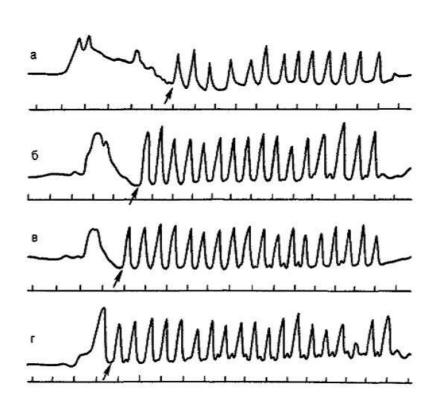
симпатические и парасимпатические нервные волокна (СН и ПН),


симпатический и парасимпатический ганглии (СГ и ПГ).

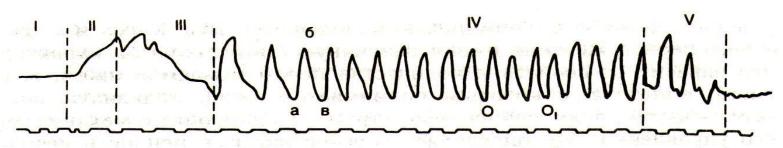
Регуляция секреции слюны вышележащими отделами ЦНС

А. Активация влияниями от центра голода гипоталамуса.


Б. Условные рефлексы с участием коры больших полушарий.

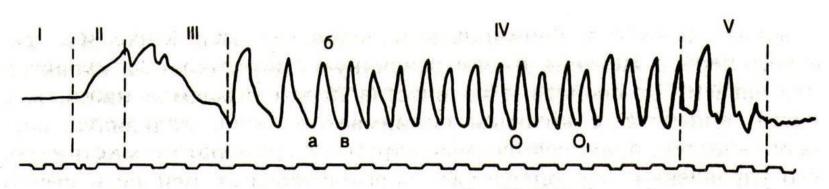


• Продукты секреции слюнных и слизистых желез в совокупности с клетками слущенного эпителия, лейкоцитами, микроорганизмами, остатками пищи, а также десневой жидкостью образуют ротовую жидкость.


Моторный процесс. Запись жевательных движений

Мастикациография

Фазы жевания (по мастикациограмме)


Кимограмма жевательного периода (по И. С. Рубинову).

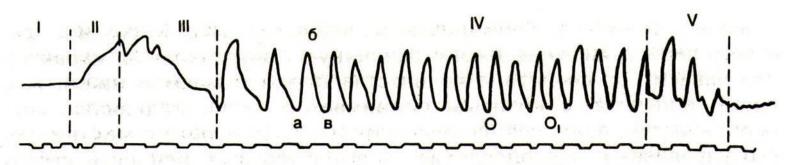
I — фаза покоя; II — фаза введения пищи в рот; III — ориентировочная фаза; IV — основная фаза; V — фаза формирования пищевого комка; а—б — опускание нижней челюсти, б—в — подъем нижней челюсти; о—о₁ — момент размалывания пищи. Внизу отметка времени 1 с.

- I. Фаза покоя
- II. Введение пищи в рот
- **III.** Ориентировочное жевание
- IV. Основная фаза (регулярные жевательные движения)
- V. Формирование пищевого комка

Фаза покоя.

- Зубные ряды не сомкнуты (расстояние между ними примерно 5 мм).
- Положение нижней челюсти определяется тонусом мышц.
- В ротовой полости отрицательное давление (благодаря нижней челюсти и языку).

Кимограмма жевательного периода (по И. С. Рубинову).


I — фаза покоя; II — фаза введения пищи в рот; III — ориентировочная фаза; IV — основная фаза; V — фаза формирования пищевого комка; а—б — опускание нижней четовать база; в почет в

Ориентировочное жевание

Медленные движения, небольшой амплитуды.

Происходит оценка качества пищи: вкуса, размера, твердости.

Определяется необходимая сила сокращения жевательных мышц.

Кимограмма жевательного периода (по И. С. Рубинову).

I — фаза покоя; II — фаза введения пищи в рот; III — ориентировочная фаза; IV — основная фаза; V — фаза формирования пищевого комка; a — δ — опускание нижней челюсти, δ — в — подъем нижней челюсти; δ — δ — момент размалывания пищи. Внизу отметка времени 1 с.

Движение нижней челюсти во время основной фазы (жевательный цикл):

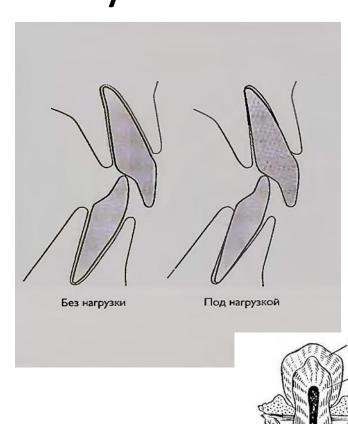
Опускается и смещается вперед и в сторону

Смещается к средней линии, происходит растирание пищи

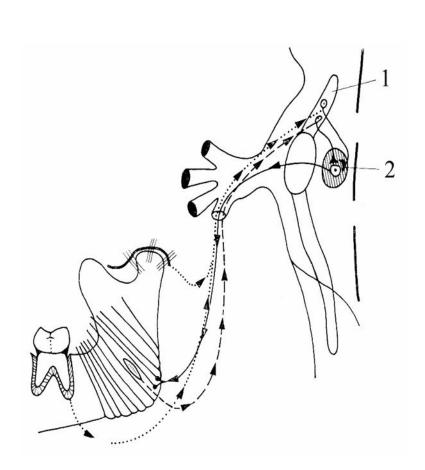
Поднимается, зубыантагонисты контактируют, раздавливая пищу

Язык во время жевания:

- Распределяет пищу на зубные ряды.
- Извлекает ее из щечно-челюстных карманов.
- Перемешивает со слюной.


Функции зубов

- **1. Опорная** (выдерживают и распределяют жевательное давление)
- 2. Защитная (обеспечивают симметричное положение височно-нижнечелюстных суставов, ограничение жевательных движений)
- **3. Сенсорная** (оценка жевательного давления и окклюзии):
- Регуляция силы сокращения мышц;
- направление движений нижней челюсти


Физиологическая подвижность зубов

Значение:

- Распределение давления
- 2. Ускорение кровотока
- 3. Раздражение рецепторов

Рефлекторная регуляция жевания

От рецепторов полости рта импульсы поступают в ствол мозга в чувствительные (1), затем двигательное (2) ядра тройничного нерва через эфферентные волокна к мышцам.

Жевательное давление

- Зависит от твердости пищи но <u>никогда не достигает</u> <u>максимума</u>.
- <u>Гнатодинамометрия</u> метод определения силы жевательных мышц и выносливости опорных тканей зубов к давлению.
- Для передних зубов сила сжатия – до 40 кг. Для моляров – до 80 кг.

Регуляция жевания

Центр жевания продолговатого мозга

1

Рецепторы мышц, пародонта, суставов, слизистых оболочек Исполнители: мышцы, слюнные железы

Результат : Пищевой комок (размер, качество)

Регуляция жевания:

- Осуществляется нервной системой. Поэтому быстро запускается, но легко тормозится. Например, при болевых ощущениях, стрессах.
- Может запускаться и останавливаться произвольно.

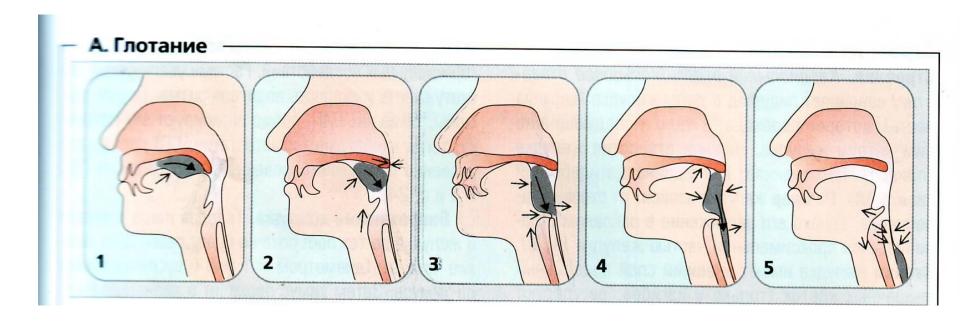
Всасывание в ротовой полости

- Имеет небольшое физиологическое значение, т.к. пища находится здесь не более 20 секунд
- Происходит в обход воротной системы печени
- Происходит интенсивно, т.к. ротовая полость обильно васкуляризована
- Всасываются водорастворимые и спирторастворимые вещества (электролиты, спирты, углеводные мономеры, витамины и т.п.)

Экскреция в ротовой полости

Не имеет большого физиологического значения, т.к. содержимое ротовой полости проглатывается или всасывается.

Диагностическое значение:


- Экскреция возрастает при отравлениях, курении и недостаточности функции почек.
- Экскретируемые вещества ощущаются на вкус и формируют запах изо рта: ацетон, мочевина.
- Слюна содержит гормоны, препараты.

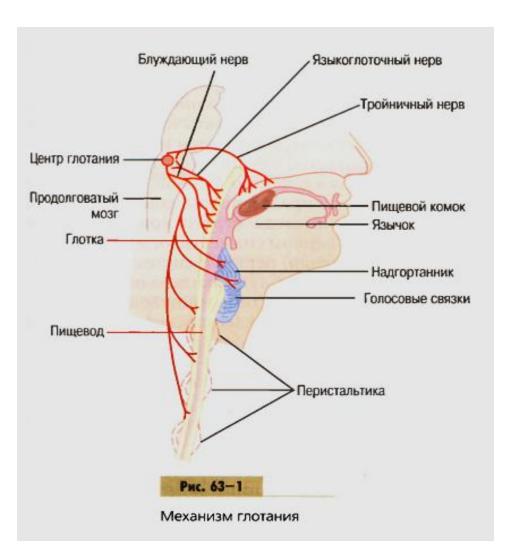
Глотание. Фазы:

Ротовая фаза - произвольная (язык формирует пищевой комок и направляет его в глотку, проталкивая назад за твердое небо);

Глоточная фаза — непроизвольная, быстрая (1-2 секунды);

Пищеводная фаза — медленная, непроизвольная (до 10 секунд).

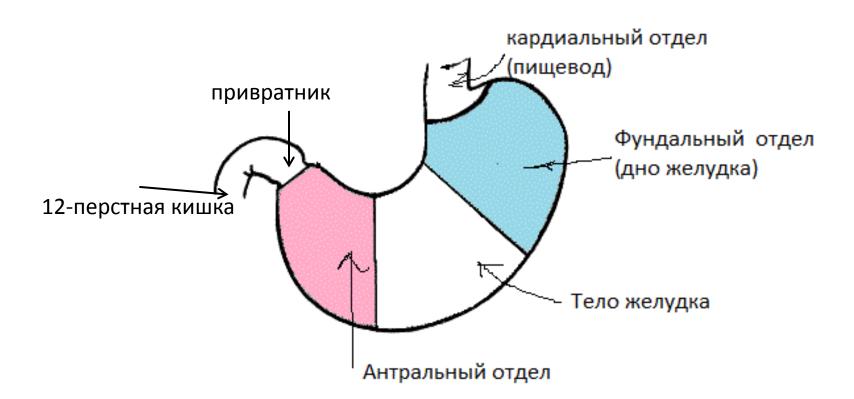

Глоточная фаза


- •Полость носа перекрывается мягким небом;
- •Надгортанник опускается, закрывая вход в гортань.
- •Пищевой комок проталкивается в пищевод сокращениями глотки и открывает верхний сфинктер пищевода.
- •Дыхание тормозится.

Давление пищевого комка на стенки пищевода стимулирует перистальтические волны, которые проталкивают пищевой комок к нижнему пищеводному сфинктеру.

3-я фаза глотания: пищеводная

Регуляция глотания – рефлекторная

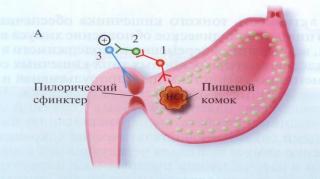


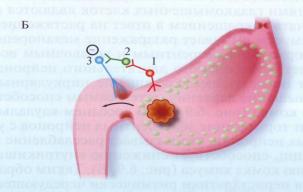
Афферентные и эфферентные волокна идут в составе тройничного, языкоглоточного и блуждающего нервов.

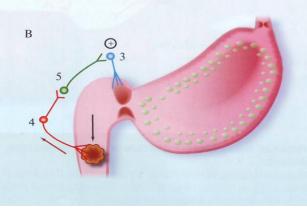
Центр – в продолговатом мозге.

Во время глоточной фазы тормозятся расположенные рядом центры дыхания и жевания.

Желудок

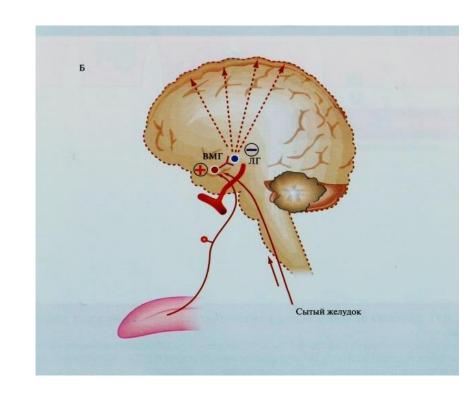



Виды моторики желудка

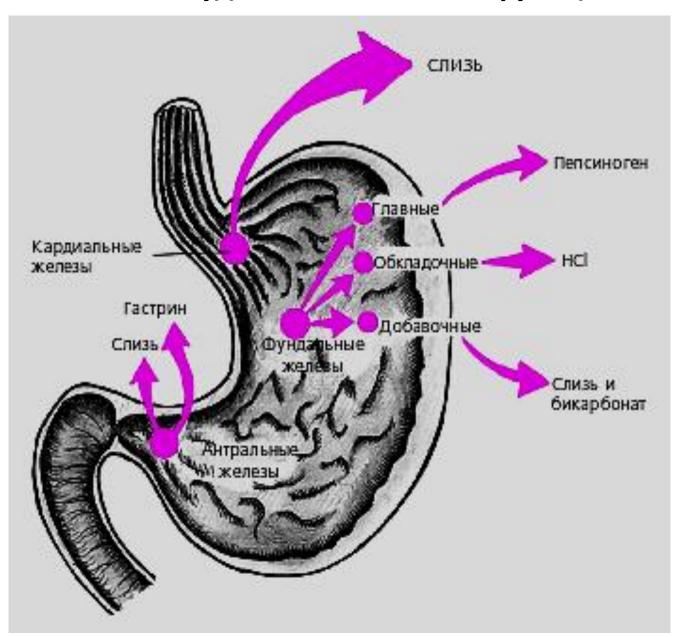

- Голодная перистальтика периодические сокращения пустого желудка
- **Рецептивная релаксация** расслабление желудка после приема пищи
- Сытая перистальтика движения желудка во время активного пищеварения
- **Тонические сокращения** тонус мышц самого желудка, кардиального и пилорического сфинктеров

Механизм эвакуации химуса из желудка («антральная систола»)

- А. Кислый химус раздражает рецепторы антрального отдела желудка, что запускает интраорганный рефлекс.
- Б. Расслабление пилорического сфинктера и сокращение антрального отдела желудка, порция химуса (5 мл) поступает в 12-перстную кишку.
- В. Кислый химус действует на рецепторы слизистой 12-перстной кишки, вызывает сокращение пилорического сфинктера.



Регуляция моторики желудка


Механизм	Стимуляция	Торможение
Нервный	Парасимпатические волокна (ацетилхолин)	Симпатические (катехоламины)
Гуморальный	Гастрин	Холецистокинин, секретин

Механизмы сенсорного насыщения

Нейроны вентромедиального гипоталамуса образуют «центр насыщения» (ВМГ). Он активируется сигналами от рецепторов полости рта и желудка, поступлением в кровь питательных веществ, влиянием гормонов.

Железы желудка и их основные функции

Желудочный сок

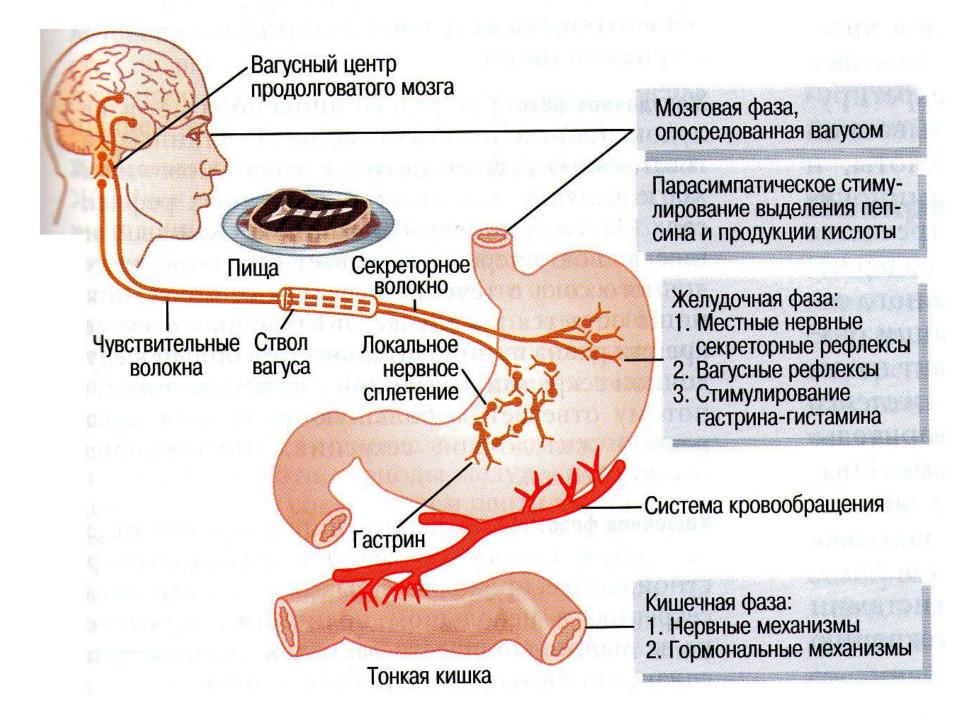
рН 0,8-1,5; 2-2,5 л/сут.

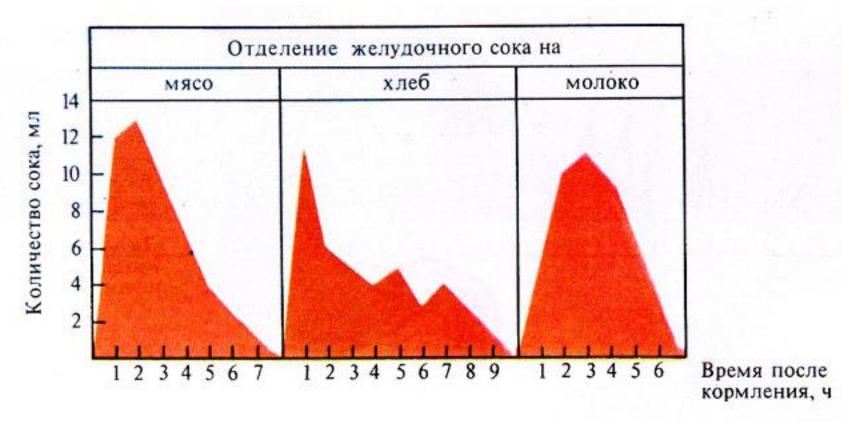
Основные компоненты:

- Соляная кислота
- Пепсины и желудочная липаза
- Муцин
- Внутренний фактор Кастла (мукопротеид, необходимый для всасывания витамина B_{12})

ФУНКЦИИ HCL ЖЕЛУДКА

- 1. ДЕНАТУРАЦИЯ И НАБУХАНИЕ БЕЛКОВ
- 2. АКТИВАЦИЯ И СОЗДАНИЕ ОПТИМУМА РН ДЛЯ ФЕРМЕНТОВ
- 3. ПОДАВЛЕНИЕ РОСТА ПАТОГЕННЫХ БАКТЕРИЙ
- 4. РЕГУЛЯЦИЯ ЭВАКУАЦИИ ХИМУСА В ДВЕНАДЦАТИПЕРСТНУЮ КИШКУ
- 5. СТИМУЛЯЦИЯ СЕКРЕЦИИ ЭНТЕРОКИНАЗЫ И ГАСТРОИНТЕСТИНАЛЬНЫХ ГОРМОНОВ В 12-ПЕРСТНОЙ КИШКЕ


Основные стимуляторы желудочной секреции


- **Ацетилхолин** (медиатор парасимпатической нервной системы)
- <u>Гастрин</u> (гормон, вырабатываемый G-клетками слизистой оболочки антрального отдела желудка)
- <u>Гистамин</u> (вырабатывается ECL-клетками слизистой желудка)

Фазы секреции желудочного сока

- 1. МОЗГОВАЯ фаза подготавливает желудок к перевариванию пищи, МЕХАНИЗМ: СОПРЯЖЕННЫЕ РЕФЛЕКСЫ
- 2. Желудочная фаза
- з. Кишечная фаза

Корригируют количество Желудочного сока в Зависимости от количества и качества пищи. МЕХАНИЗМЫ: НЕРВНЫЙ И ГУМОРАЛЬНЫЙ

Объем желудочного сока зависит от вида пищи

Выраженность мозговой фазы больше при употреблении мяса (стимуляция обонятельных, вкусовых рецепторов; более длительный процесс жевания)