

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова Кафедра общей и биоорганической химии

Кинетика химических процессов

Химическая кинетика

— раздел химии, в котором изучаются скорости и механизмы химических реакций.

Скорость химической реакции — изменение концентрации исходного вещества или продукта реакции за некоторый интервал времени.

Механизм реакции — последовательность и характер элементарных стадий химической реакции.

Элементарная (простая) реакция — химическая реакция, происходящая в одну стадию.

Сложная реакция — включает несколько различных стадии, приводящих к конечным продуктам.

Кинетическое уравнение реакции — математическое выражение зависимости скорости реакции от концентраций реагирующих веществ.

Гомогенные и гетерогенные реакции

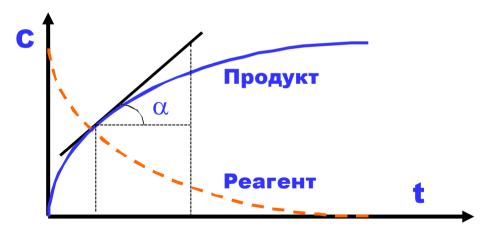
Гомогенные реакции характеризуются отсутствием поверхности раздела фаз между реагентами, поэтому их взаимодействие протекает по всему объему системы.

а) реакции между газами:
$$2NO_{(r)} + O_{2(r)} \rightarrow 2NO_{2(r)}$$

б) реакции в растворах:
$$AgNO_{3(p-p)} + KCI_{(p-p)} \rightarrow AgCI_{(\tau)} \downarrow + KNO_{3(p-p)}$$

Гетерогенные реакции характеризуются наличием поверхности раздела между реагентами, где и протекает их взаимодействие.

$$CaO_{(T)} + CO_{2(\Gamma)} \rightarrow CaCO_{3(T)}$$


$$Zn_{(\tau)} + 2 HCI_{(p-p)} \rightarrow ZnCI_{2(p-p)} + H_{2(r)}$$

Скорость гомогенной химической реакции

$$v = \frac{|\Delta \mathbf{c}|}{\Delta \mathbf{t}}$$
 [моль/л·сек]

Мгновенная (истинная) скорость в данный момент времени:

$$\mathcal{U} = \lim_{\Delta \mathbf{t} \to \mathbf{0}} \frac{|\Delta \mathbf{c}|}{\Delta \mathbf{t}} = \pm \frac{\mathbf{dc}}{\mathbf{dt}}$$

Начальная скорость – скорость в начале реакции.

Средняя скорость по данному компоненту **A**: $\mathcal{U}_{\mathsf{CD}} = |\Delta c(\mathsf{A})| / \Delta t$

Реакция получения йодоводорода

$$H_2 + I_2 = 2HI$$

$$v_1 = \frac{\left| \Delta \mathbf{c}(\mathbf{H}_2) \right|}{\Delta \mathbf{t}}$$

$$v_2 = \frac{\left| \Delta \mathbf{c}(\mathbf{I}_2) \right|}{\Delta \mathbf{t}}$$

$$v_2 = \frac{\left| \Delta \mathbf{c}(\mathbf{I}_2) \right|}{\Delta \mathbf{t}} \qquad v_3 = \frac{\left| \Delta \mathbf{c}(\mathbf{HI}) \right|}{\Delta \mathbf{t}}$$

$$v_1 = v_2 = \frac{1}{2} v_3$$

$$v_1 = \frac{\Delta c(H_2)}{\Delta t} = \frac{0.5 \text{ моль/л}}{1 \text{час}} = 0.5 \text{ моль/л} \cdot \text{час} = 1.4 \cdot 10^{-4} \text{моль/л} \cdot \text{сек}$$

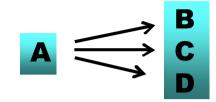
Механизм реакции

- последовательность элементарных актов взаимодействия реагентов
- 1) простые реакции протекают в одну стадию:

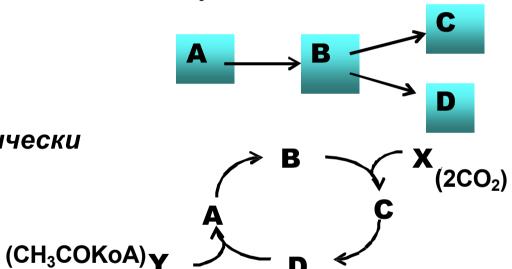
$$I_2 \rightarrow 2I^{\bullet}$$
 $H^{+} + OH^{-} = H_2O$ $O_2 + O^{\bullet} = O_3$

2) сложные реакции протекают в несколько стадий, каждая из которых является простой:

 $H_2 + CI_2 = 2HCI - сложная реакция, цепной механизм:$


- 1. $Cl_2 \rightarrow 2 Cl$
- 2. $Cl^{\bullet} + H_2 \rightarrow HCl + H^{\bullet}$, $H^{\bullet} + Cl_2 \rightarrow HCl + Cl^{\bullet}$,
- 3. Cl' + Cl' \rightarrow Cl₂, H' + H' \rightarrow H₂ и т.д.

$$RH + O_2 \to ROOH$$
 — перекисное окисление липидов $2H_2 + O_2 \to 2H_2O$ — взрыв гремучего газа


Сложные реакции могут протекать:

- 1) последовательно $\mathsf{A} \to \mathsf{B} \to \mathsf{C} \to \mathsf{D}$
- 2) параллельно

4) циклически

3) последовательно-параллельно

- Все гетерогенные реакции сложные.
- Самая медленная (лимитирующая) стадия определяет скорость всей реакции.

Факторы, влияющие на скорость гомогенной реакции

- Природа реагирующих веществ
- Концентрация реагентов
- Температура
- Катализаторы
- Давление (если участвуют газообразные вещества)
- В гетерогенных реакциях площадь соприкосновения и скорость диффузии, перемешивание.

Природа реагирующих веществ

Молекулы: $3H_2 + N_2 = 2NH_3$ (медленно)

Ионы: $H^+ + OH^- = H_2O$ (быстро)

Радикалы: $H^{\bullet} + CI^{\bullet} = HCI$ (быстро)

Влияние концентрации реагентов на скорость реакции

Для простой реакции – закон действующих масс (Гульдберг и Вааге, 1864–1867 гг)

$$aA + eB \rightarrow dD + cC$$
 $v = k \cdot c^a(A) \cdot c^b(B)$

кинетическое уравнение реакции

а, b – стехиометрические коэффициенты простой реакции.

Константа скорости реакции (*k***)** – скорость реакции при концентрациях реагентов, равных 1 моль/л; зависит от природы веществ и температуры.

Кинетическое уравнение

Для сложной реакции

$$aA + bB \rightarrow C$$
 $v = kc^n(A) \cdot c^m(B)$

Кинетическое уравнение — экспериментальная зависимость между скоростью реакции и концентрациями реагирующих веществ или продуктов реакции (а также между концентрацией вещества и временем, прошедшим с начала реакции).

п и т — порядок реакции по веществам А и В (может не совпадать со стехиометрическими коэффициентами),
 п + т — полный порядок реакции.

Молекулярность и порядок реакции

Молекулярность реакции — число частиц, участвующих в элементарном акте реакции (1 или 2, редко 3).

$$N_2O_5 \rightarrow N_2O_3 + O_2$$
 — мономолекулярная реакция

$$H_2 + I_2 \rightarrow 2HI$$
 — бимолекулярная реакция

$$2NO + O_2 \rightarrow 2NO_2$$
 — тримолекулярная реакция

Порядок реакции — сумма порядков всех исходных веществ в кинетическом уравнении реакции (0, 1, 2, 3 или дробное значение). Экспериментальная величина.

$$H_2 + I_2 \rightarrow 2HI$$
 $v = k \cdot c(H_2) \cdot c(I_2)$ – бимолекулярная реакция 2-го порядка

$$C_{12}H_{22}O_{11(p-p)} + H_2O \rightarrow C_6H_{12}O_{6(p-p)} + C_6H_{12}O_{6(p-p)}$$
 $v = k \cdot c(H_2O) \cdot c(C_{12}H_{22}O_{11}) = k \cdot c(C_{12}H_{22}O_{11})$
– бимолекулярная реакция 1-го порядка

- Для простых реакций суммарный порядок реакции равен молекулярности реакции.
- Порядок и молекулярность *не совпадают*, если реакция а) сложная, б) гетерогенная, в) протекает с избытком одного из веществ.

Примеры

1)
$$2N_2O_{5(r)} oup 4NO_{2(r)} + O_{2(r)}$$

Кинетическое уравнение $v = k \cdot c(N_2O_5)$ (порядок 1) а не $v = k \cdot c^2(N_2O_5)$ (порядок 1) механизм:

1 стадия $v = k \cdot c(N_2O_5)$ (медленно) $v = k \cdot c(N_2O_5)$

2 стадия $v = k \cdot c(N_2O_5)$

2 $v = k \cdot c(N_2O_5)$ (быстро)

Задачи для самостоятельного решения

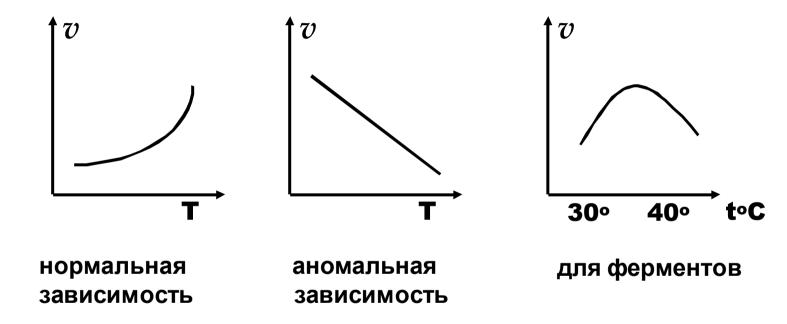
1. Определить молекулярность и порядок одностадийных реакций и записать для каждой математическое выражение для скорости на основании закона действующих масс:

1.
$$N_2O_{5(\Gamma)} \rightarrow NO_{(\Gamma)} + NO_{2(\Gamma)} + O_{2(\Gamma)}$$

2.
$$2NO_{2(\Gamma)} \rightarrow N_2O_{4(\Gamma)}$$

3.
$$Cl_{2(\Gamma)} + 2NO_{(\Gamma)} \rightarrow 2NOCl_{(\Gamma)}$$

4.
$$2C_{(TB.)} + O_{2(\Gamma)} \rightarrow 2CO_{(\Gamma)}$$


2. Реакция 2HI + $H_2O_2 \rightarrow I_2$ + $2H_2O$ протекает через две последовательные стадии:

$$HI + H_2O_2 \rightarrow HIO + H_2O$$
 (медленная стадия)
 $HIO + HI \rightarrow I_2 + H_2O$ (быстрая стадия)

Какая из стадий определяет скорость и порядок сложной реакции? Найдите молекулярность каждой стадии.

Какое кинетическое уравнение определяет скорость сложной реакции?

Влияние температуры на скорость реакции

Скорость *большинства* реакций увеличивается с ростом температуры.

Температурный коэффициент скорости реакции (у)

Приближенное правило Вант-Гоффа (1884 г):

при повышении температуры на 10 градусов скорость гомогенной химической реакции увеличивается в 2–4 раза.

$$\gamma = \frac{v_{T+10}}{v_T} = \frac{k_{T+10}}{k_T} = 2-4$$

$$v_2 = v_1 \cdot \gamma = \frac{T_2 - T_1}{10}$$

$$\frac{k_2}{k_1} = \gamma = \frac{T_2 - T_1}{10}$$

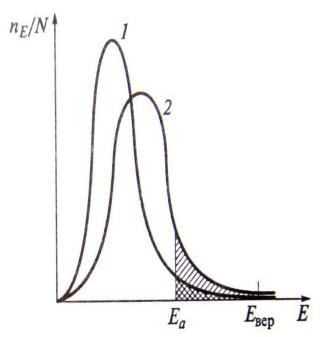
$$k_2 = k_1 \cdot \gamma = \frac{T_2 - T_1}{10}$$

Пример

$$\gamma = 2$$
, $\Delta T = T_2 - T_1 = 40$, $k_2/k_1 = 2^{40/10} = 2^4 = 16$

Задание

Температурный коэффициент реакции равен 2. На сколько градусов надо уменьшить температуру, чтобы скорость реакции уменьшилась в 16 раз?


$$v_{t_2} = v_{t_1} \cdot \gamma^{\frac{t_2 - t_1}{10}},$$

Уравнение Аррениуса (1889 г)

- зависимость скорости реакции от температуры

$$k = A \cdot e^{-E_a/RT}$$

- **k** константа скорости при температуре T,
- А предэкспонента, учитывающая вероятность и число столкновений,
- Е_а энергия активации (энергетический барьер, который должны преодолеть исходные вещества по пути превращения в продукты реакции.

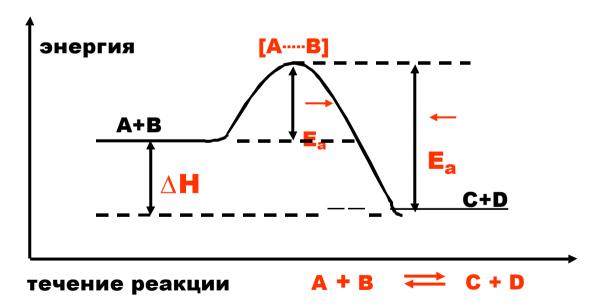
Теория активных столкновений и теория активированного комплекса.

Кривые распределения молекул по энергиям при 293 (1) и 303 (2) К Максвелла-Больцмана:

$$n_E/N = e^{-E/(RT)}$$

 n_E/N – доля молекул с энергией Е

Энергия активации


 Минимальная энергия, необходимая 1 моль вещества для того, чтобы все его частицы вступили в данное взаимодействие.

 $E_{\rm a}$ (10–250 кДж/моль) зависит от природы веществ и пути реакции, не зависит от T.

 $E_{\rm a} < 50 \; {\rm кДж/моль} - {\rm высокая} \; {\rm скорость} \; {\rm реакции}.$

 $E_{\rm a} > 100 \ кДж/моль - скорость реакции очень мала.$

Источники активации: термические (подвод тепла). излучение (свет, ультразвук, радиация).

3. Изобразите графически энергетическую схему хода следующих реакций (график энергии активации):

$$H_2(\Gamma) + I_2(\Gamma) \rightarrow 2HI(\Gamma)$$

 ΔH° р-ции < 0

$$N_2(\Gamma) + O_2(\Gamma) \rightarrow 2NO(\Gamma)$$

 ΔH° р-ции > 0

4. В каком случае скорость химической реакции:

$$CO_{(r)} + H_2O_{2(r)} \rightarrow CO_{2(r)} + H_{2(r)} \quad \Delta H^{\circ}$$
 p-ции < 0

больше:

а) при введении катализатора железа

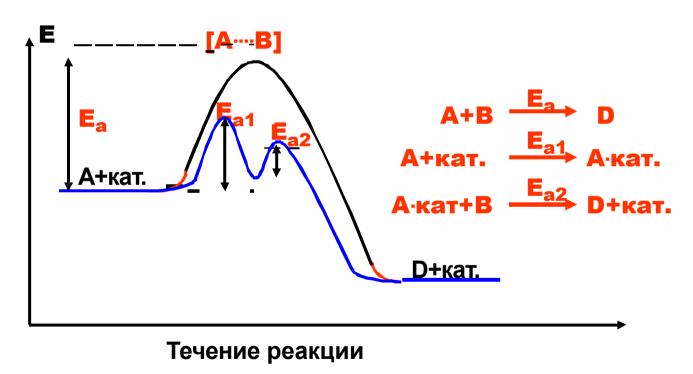
$$(E_{aкт} = 72 кДж)$$

б) при введении катализатора платины

$$(E_{akt} = 42 кДж)?$$

Ответ проиллюстрируйте графически, применяя энергетическую схему хода реакции (график энергии активации).

Задание


Какая реакция протекает с большей скоростью, если энергия активации первой реакции меньше энергии активации второй реакции?

В одних координатах приведите графики энергии активации при условии, что обе реакции эндотермические.

Влияние катализатора

Катализатор — вещество, которое увеличивает скорость реакции, участвует в реакции, но остается неизменным в результате реакции.

Роль катализатора — изменение механизма реакции, снижение энергии активации.

Гомогенный катализ — катализатор и реагенты находятся в одной фазе (в растворе или газовой фазе).

$$2SO_{2(r)}+O_{2(r)} \xrightarrow{NO_{(ras)}} 2SO_{3(r)}$$

Гетерогенный катализ — катализатор находится в другой фазе, как правило, твердой, ускорение реакции происходит на поверхности катализатора.

$$C_2H_{4(r)}+H_{2(r)} \xrightarrow{Pt,Ni_{(TB.)}} C_2H_{6(r)}$$

Специфические катализаторы

— ускоряют однотипные реакции (V_2O_5) .

Универсальные катализаторы — ускоряют разные реакции (Pt).

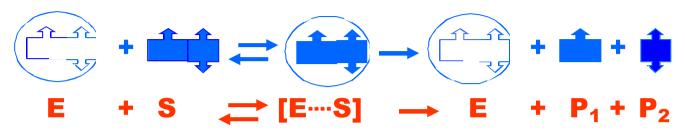
Кислотно-основный катализ — катализаторы кислоты или основания.

$$H^+$$
 Эфир + H_2O \longrightarrow Кислота + Спирт

Ферментативный катализ и его особенности

Ферменты (энзимы) — белковые молекулы, катализирующие химические реакции в живых системах.

У простых ферментов активный центр сформирован только белковой молекулой, у сложных активный центр имеет небелковую составляющую — кофактор (катион металла или сложное органическое соединение).


Специфические свойства ферментов РАЗМЕР — относительная молярная масса от 10⁵ до 10³ (как у коллоидных частивный катализ и его особенности

ВЫСОКАЯ КАТАЛИТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ — 1моль алкогольдегидрогеназы за 1 с при 25° с превращает 720 моль этанола в альдегид. Промышленный катализатор — 1 моль за 1 с при 200° С окисляет 1 моль этанола.

ВЫСОКАЯ СПЕЦИФИЧНОСТЬ — способность ускорять строго определенные реакции по принципу *«ключ – замок»*.

НЕОБХОДИМОСТЬ СТРОГО ОПРЕДЕЛЕННЫХ УСЛОВИЙ (*T*, pH).

Теория "Ключ в замке"

НЕОБХОДИМОСТЬ СТРОГО ОПРЕДЕЛЕННЫХ УСЛОВИЙ — температуры и рН

Константа химического равновесия

В условиях равновесия для любого обратимого процесса

$$aA + bB \implies dD + fF$$

$$v_{\text{прямой}} = \mathbf{k}_1 \cdot \mathbf{C}_{\mathrm{M} \, \mathrm{A}}^{\mathrm{a}} \cdot \mathbf{C}_{\mathrm{M} \, \mathrm{B}}^{\mathrm{b}} v_{\mathrm{обратной}} = \mathbf{k}_2 \cdot \mathbf{C}_{\mathrm{M} \, \mathrm{D}}^{\mathrm{d}} \cdot \mathbf{C}_{\mathrm{M} \, \mathrm{F}}^{\mathrm{f}}$$

В состоянии равновесия $v_{\text{прямой}} = v_{\text{обратной}}$

Равновесные концентрации обозначаются [символ вещества]

$$\frac{\mathbf{k}_1}{\mathbf{k}_2} = \frac{[\mathbf{D}]^{\mathbf{d}} \cdot [\mathbf{F}]^{\mathbf{f}}}{[\mathbf{A}]^{\mathbf{a}} \cdot [\mathbf{B}]^{\mathbf{b}}}$$

Концентрации всех реагентов будут постоянными до оказания внешнего воздействия, называются равновесные.

$$K_{\text{равн}} = \frac{k_1}{k_2} K_{\text{равн}} = \frac{k_1}{k_2} = \frac{[D]^d \cdot [F]^f}{[A]^a \cdot [B]^b}$$

Закон Гульдберга и Вааге для обратимых реакций

Отношение произведения равновесных концентраций исходных веществ в степенях, равных стехиометрическим коэффициентам, к произведению равновесных концентраций продуктов реакции <u>есть величина постоянная при данной температуре</u> и называется константой равновесия.

Константа химического равновесия показывает, во сколько раз отличается скорость прямой реакции от скорости обратной при концентрациях равных 1 моль/л

Константа равновесия зависит от:

- ≻природы реагирующих веществ;
- ≻температуры.

$$K_{\mathrm{pabh}} = rac{k_1}{k_2}$$

Принцип Ле Шателье

Равновесие в равновесной системе всегда смещается в сторону того процесса, протекание которого уменьшает эффект внешнего воздействия на систему.

Смещение вызывают:

- 1. Изменение температуры
- 2. Изменение концентрации участников равновесия
- 3. Изменение давления и объёма системы (для газов)

Задание

В какую сторону сместится равновесие в следующих системах:

- а) $2SO_{2 (r)} + O_{2 (r)} \rightarrow 2 SO_{3 (r)}$ при увеличении концентрации SO_3 ?
- б) $N_{2 (r)} + 3H_{2 (r)} \rightarrow 2NH_{3 (r)}$ при уменьшении объёма системы в 2 раза?

Будут ли изменяться константы скоростей прямой и обратной реакции и константа равновесия?

Взаимосвязь константы равновесия с изменением энергии Гиббса

$$\Delta G^{\circ} = -2.3RT \lg K_P$$

где:

ΔG°- стандартное изменение энергии Гиббса Дж;

R – универсальная газовая постоянная 8,31 Дж/моль·К

Т– абсолютная температура, К;

К _р – константа химического равновесия

Влияние давления

Уравнение Менделеева – Клапейрона

$$\mathbf{P} = \boxed{\frac{\mathbf{v}}{\mathbf{V}}} \mathbf{R} \mathbf{T}$$

$$C_{M}$$
 газообразных веществ $= P \cdot \frac{1}{RT}$

При изменении давления прямопропорционально изменяется объем системы, следовательно, **прямо пропорционально изменяются концентрации всех газообразных веществ** в реакционном сосуде (исходных и продуктов) в одинаковой степени.

Влияние давления

Задание

Дана реакция: $2SO_2(ras) + O_2(ras) \Longrightarrow 2SO_3(ras)$ Как изменится скорость прямой реакции, если давление увеличить в 3 раза?

Задание

Как изменятся кинетические параметры реакции прямого синтеза аммиака при изменении условий проведения реакции?

Напишите уравнение реакции, кинетические уравнения скоростей прямой и обратной реакций, уравнение Аррениуса, выражение константы равновесия, на основании этих уравнений сделайте выводы.

Заполните таблицу. Форма записи:

Значение параметра увеличивается ↑

Значение параметра уменьшается ↓

Значение параметра не изменяется –

Заполните таблицу, приведите аргументы

Параметр Фактор	k_1	k_2	$oldsymbol{v}_{прямой}$	$oldsymbol{v}_{oбратной}$	$K_{paвh}$	$v_{ m прямой} \ >,<,= \ v_{ m обратной}$	\rightleftarrows
1. C _{M N₂} ↑							
2. P↑							
3. T↑							
4. Ввели ингибитор Еакт ↑							